Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation.

Identifieur interne : 000189 ( Main/Exploration ); précédent : 000188; suivant : 000190

Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation.

Auteurs : Anna L. Bazzicalupo [États-Unis] ; Joske Ruytinx [Belgique] ; Yi-Hong Ke [États-Unis] ; Laura Coninx [Belgique] ; Jan V. Colpaert [Belgique] ; Nhu H. Nguyen [États-Unis] ; Rytas Vilgalys [États-Unis] ; Sara Branco [États-Unis]

Source :

RBID : pubmed:32866320

Abstract

Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.

DOI: 10.1111/mec.15618
PubMed: 32866320


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation.</title>
<author>
<name sortKey="Bazzicalupo, Anna L" sort="Bazzicalupo, Anna L" uniqKey="Bazzicalupo A" first="Anna L" last="Bazzicalupo">Anna L. Bazzicalupo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Montana State University, Bozeman, MT</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruytinx, Joske" sort="Ruytinx, Joske" uniqKey="Ruytinx J" first="Joske" last="Ruytinx">Joske Ruytinx</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ke, Yi Hong" sort="Ke, Yi Hong" uniqKey="Ke Y" first="Yi-Hong" last="Ke">Yi-Hong Ke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Duke University, Durham, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Duke University, Durham, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coninx, Laura" sort="Coninx, Laura" uniqKey="Coninx L" first="Laura" last="Coninx">Laura Coninx</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Colpaert, Jan V" sort="Colpaert, Jan V" uniqKey="Colpaert J" first="Jan V" last="Colpaert">Jan V. Colpaert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Nhu H" sort="Nguyen, Nhu H" uniqKey="Nguyen N" first="Nhu H" last="Nguyen">Nhu H. Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI</wicri:regionArea>
<placeName>
<region type="state">Hawaï</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vilgalys, Rytas" sort="Vilgalys, Rytas" uniqKey="Vilgalys R" first="Rytas" last="Vilgalys">Rytas Vilgalys</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Duke University, Durham, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Duke University, Durham, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Branco, Sara" sort="Branco, Sara" uniqKey="Branco S" first="Sara" last="Branco">Sara Branco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Colorado Denver, Denver, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32866320</idno>
<idno type="pmid">32866320</idno>
<idno type="doi">10.1111/mec.15618</idno>
<idno type="wicri:Area/Main/Corpus">000049</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000049</idno>
<idno type="wicri:Area/Main/Curation">000049</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000049</idno>
<idno type="wicri:Area/Main/Exploration">000049</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation.</title>
<author>
<name sortKey="Bazzicalupo, Anna L" sort="Bazzicalupo, Anna L" uniqKey="Bazzicalupo A" first="Anna L" last="Bazzicalupo">Anna L. Bazzicalupo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Montana State University, Bozeman, MT</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruytinx, Joske" sort="Ruytinx, Joske" uniqKey="Ruytinx J" first="Joske" last="Ruytinx">Joske Ruytinx</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ke, Yi Hong" sort="Ke, Yi Hong" uniqKey="Ke Y" first="Yi-Hong" last="Ke">Yi-Hong Ke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Duke University, Durham, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Duke University, Durham, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coninx, Laura" sort="Coninx, Laura" uniqKey="Coninx L" first="Laura" last="Coninx">Laura Coninx</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Colpaert, Jan V" sort="Colpaert, Jan V" uniqKey="Colpaert J" first="Jan V" last="Colpaert">Jan V. Colpaert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Nhu H" sort="Nguyen, Nhu H" uniqKey="Nguyen N" first="Nhu H" last="Nguyen">Nhu H. Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI</wicri:regionArea>
<placeName>
<region type="state">Hawaï</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vilgalys, Rytas" sort="Vilgalys, Rytas" uniqKey="Vilgalys R" first="Rytas" last="Vilgalys">Rytas Vilgalys</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Duke University, Durham, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Duke University, Durham, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Branco, Sara" sort="Branco, Sara" uniqKey="Branco S" first="Sara" last="Branco">Sara Branco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Colorado Denver, Denver, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology</title>
<idno type="eISSN">1365-294X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32866320</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-294X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>Molecular ecology</Title>
<ISOAbbreviation>Mol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mec.15618</ELocationID>
<Abstract>
<AbstractText>Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bazzicalupo</LastName>
<ForeName>Anna L</ForeName>
<Initials>AL</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5845-9517</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruytinx</LastName>
<ForeName>Joske</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ke</LastName>
<ForeName>Yi-Hong</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Duke University, Durham, NC, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coninx</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Colpaert</LastName>
<ForeName>Jan V</ForeName>
<Initials>JV</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Nhu H</ForeName>
<Initials>NH</Initials>
<AffiliationInfo>
<Affiliation>Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vilgalys</LastName>
<ForeName>Rytas</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Duke University, Durham, NC, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Branco</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>502931</GrantID>
<Agency>Joint Genome Institute Community Science Program</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>DEB-1554181</GrantID>
<Agency>NSF</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>141461</GrantID>
<Agency>Flanders Innovation & Entrepreneurships PhD fellowship</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Hawaii's Agricultural Experiment Station</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Montana's Agricultural Experiment Station</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>G079213N</GrantID>
<Agency>Fonds Wetenschappelijk Onderzoek</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol</MedlineTA>
<NlmUniqueID>9214478</NlmUniqueID>
<ISSNLinking>0962-1083</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Suillus luteus </Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">gene flow</Keyword>
<Keyword MajorTopicYN="N">heavy metal soil</Keyword>
<Keyword MajorTopicYN="N">mycorrhizal</Keyword>
<Keyword MajorTopicYN="N">pollution</Keyword>
<Keyword MajorTopicYN="N">polygenic adaptation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32866320</ArticleId>
<ArticleId IdType="doi">10.1111/mec.15618</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adriaensen, K., Vangronsveld, J., & Colpaert, J. V. (2006). Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza, 16(8), 553-558. https://doi.org/10.1007/s00572-006-0072-7</Citation>
</Reference>
<Reference>
<Citation>Adriaensen, K., Vrålstad, T., Noben, J. P., Vangronsveld, J., & Colpaert, J. V. (2005). Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology, 71(11), 7279. https://doi.org/10.1128/AEM.71.11.7279-7284.2005</Citation>
</Reference>
<Reference>
<Citation>Aloui, A., Recorbet, G., Gollotte, A., Robert, F., Valot, B., Gianinazzi-Pearson, V., … Dumas-Gaudot, E. (2009). On the mechanisms of Cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: A root proteomic study. Proteomics, 9(2), 420-433. https://doi.org/10.1002/pmic.200800336</Citation>
</Reference>
<Reference>
<Citation>Aloui, A., Recorbet, G., Robert, F., Schoefs, B., Bertrand, M., Henry, C., … Aschi-Smiti, S. (2011). Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biology, 11(1), 75. https://doi.org/10.1186/1471-2229-11-75</Citation>
</Reference>
<Reference>
<Citation>Arnold, B. J., Lahner, B., DaCosta, J. M., Weisman, C. M., Hollister, J. D., Salt, D. E., … Yant, L. (2016). Borrowed alleles and convergence in serpentine adaptation. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 8320-8325. https://doi.org/10.1073/pnas.1600405113</Citation>
</Reference>
<Reference>
<Citation>Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25. https://doi.org/10.1038/75556</Citation>
</Reference>
<Reference>
<Citation>Berg, J. J., & Coop, G. (2014). A Population genetic signal of polygenic adaptation. PLoS Genetics, 10(8), e1004412. https://doi.org/10.1371/journal.pgen.1004412</Citation>
</Reference>
<Reference>
<Citation>Boeva, V., Popova, T., Bleakley, K., Chiche, P., Cappo, J., Schleiermacher, G., … Barillot, E. (2011). Control-FREEC: A tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics, 28(3), 423-425. https://doi.org/10.1093/bioinformatics/btr670</Citation>
</Reference>
<Reference>
<Citation>Bushnell, B. (2014). BBTools software. Joint Genome Institute. Retrieved from http://sourceforge.net/projects/bbmap</Citation>
</Reference>
<Reference>
<Citation>Clarke, G. M., Anderson, C. A., Pettersson, F. H., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2011). Basic statistical analysis in genetic case-control studies. Nature Protocols, 6(2), 121-133. https://doi.org/10.1038/nprot.2010.182</Citation>
</Reference>
<Reference>
<Citation>Colpaert, J. V., Muller, L. A., Lambaerts, M., Adriaensen, K., & Vangronsveld, J. (2004). Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist, 162(2), 549-559. https://doi.org/10.1111/j.1469-8137.2004.01037.x</Citation>
</Reference>
<Reference>
<Citation>Colpaert, J. V., & van Assche, J. A. (1987). Heavy metal tolerance in some ectomycorrhizal fungi. Functional Ecology, 1(4), 415-421. https://doi.org/10.2307/2389799</Citation>
</Reference>
<Reference>
<Citation>Colpaert, J. V., Vandenkoornhuyse, P., Adriaensen, K., & Vangronsveld, J. (2000). Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist, 147(2), 367-379. https://doi.org/10.1046/j.1469-8137.2000.00694.x</Citation>
</Reference>
<Reference>
<Citation>Colpaert, J. V., Wevers, J., Krznaric, E., & Adriaensen, K. (2011). How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science, 68(1), 17-24. https://doi.org/10.1007/s13595-010-0003-9</Citation>
</Reference>
<Reference>
<Citation>Coninx, L., Smisdom, N., Kohler, A., Arnauts, N., Ameloot, M., Rineau, F., … Ruytinx, J. (2019). SlZRT2 Encodes a ZIP Family Zn transporter with dual localization in the ectomycorrhizal fungus Suillus luteus. Frontiers in Microbiology, 10, 2251. https://doi.org/10.3389/fmicb.2019.02251</Citation>
</Reference>
<Reference>
<Citation>Coninx, L., Thoonen, A., Slenders, E., Morin, E., Arnauts, N., Op De Beeck, M., … Colpaert, J. V. (2017). The SlZRT1 gene encodes a plasma membrane-located ZIP (Zrt-, Irt-Like Protein) transporter in the ectomycorrhizal fungus Suillus luteus. Frontiers in Microbiology, 8, 2320. https://doi.org/10.3389/fmicb.2017.02320</Citation>
</Reference>
<Reference>
<Citation>Craciun, A. R., Meyer, C.-L., Chen, J., Roosens, N., De Groodt, R., Hilson, P., & Verbruggen, N. (2012). Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. Journal of Experimental Botany, 63(11), 4179-4189. https://doi.org/10.1093/jxb/ers104</Citation>
</Reference>
<Reference>
<Citation>Črešnar, B., & Petrič, Š. (2011). Cytochrome P450 enzymes in the fungal kingdom. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(1), 29-35. https://doi.org/10.1016/j.bbapap.2010.06.020</Citation>
</Reference>
<Reference>
<Citation>Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., … Group, G. P. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330</Citation>
</Reference>
<Reference>
<Citation>Dayan, D. I., Du, X., Baris, T. Z., Wagner, D. N., Crawford, D. L., & Oleksiak, M. F. (2019). Population genomics of rapid evolution in natural populations: Polygenic selection in response to power station thermal effluents. BMC Evolutionary Biology, 19(1), 61. https://doi.org/10.1186/s12862-019-1392-5</Citation>
</Reference>
<Reference>
<Citation>Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1763(7), 711-722. https://doi.org/10.1016/j.bbamcr.2006.03.005</Citation>
</Reference>
<Reference>
<Citation>Eierman, L. E., & Hare, M. P. (2015). Reef-specific patterns of gene expression plasticity in Eastern Oysters (Crassostrea virginica). Journal of Heredity, 107(1), 90-100. https://doi.org/10.1093/jhered/esv057</Citation>
</Reference>
<Reference>
<Citation>Ellison, C. E., Hall, C., Kowbel, D., Welch, J., Brem, R. B., Glass, N. L., & Taylor, J. W. (2011). Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2831-2836. https://doi.org/10.1073/pnas.1014971108</Citation>
</Reference>
<Reference>
<Citation>Exposito-Alonso, M., Vasseur, F., Ding, W., Wang, G., Burbano, H. A., & Weigel, D. (2018). Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nature Ecology & Evolution, 2(2), 352-358. https://doi.org/10.1038/s41559-017-0423-0</Citation>
</Reference>
<Reference>
<Citation>Fang, G. C., Hanau, R. M., & Vaillancourt, L. J. (2002). The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genetics and Biology, 36(2), 155-165. https://doi.org/10.1016/S1087-1845(02)00008-7</Citation>
</Reference>
<Reference>
<Citation>Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany, 67(22), 6253-6265. https://doi.org/10.1093/jxb/erw403</Citation>
</Reference>
<Reference>
<Citation>Fries, N. (1978). Basidiospore germination in some mycorrhiza-forming hymenomycetes. Transactions of the British Mycological Society, 70(3), 319-324. https://doi.org/10.1016/S0007-1536(78)80128-4</Citation>
</Reference>
<Reference>
<Citation>Gerstein, A. C., Ono, J., Lo, D. S., Campbell, M. L., Kuzmin, A., & Otto, S. P. (2015). Too much of a good thing: The unique and repeated paths toward copper adaptation. Genetics, 199(2), 555-571. https://doi.org/10.1534/genetics.114.171124</Citation>
</Reference>
<Reference>
<Citation>Grant, P. R., & Grant, B. R. (2002). Adaptive radiation of Darwin's finches: Recent data help explain how this famous group of Galapagos birds evolved, although gaps in our understanding remain. American Scientist, 90(2), 130-139. https://doi.org/10.1511/2002.2.130</Citation>
</Reference>
<Reference>
<Citation>Guo, K., Liu, Y. F., Zeng, C., Chen, Y. Y., & Wei, X. J. (2014). Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agriculturae Scandinavica Section B: Soil & Plant Science, 64(5), 377-391. https://doi.org/10.1080/09064710.2014.913679</Citation>
</Reference>
<Reference>
<Citation>Haldane, J. B. S. (1930). A mathematical theory of natural and artificial selection.(Part VI, Isolation.). Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society.</Citation>
</Reference>
<Reference>
<Citation>Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1-11. https://doi.org/10.1093/jexbot/53.366.1</Citation>
</Reference>
<Reference>
<Citation>Hendrick, M. F., Finseth, F. R., Mathiasson, M. E., Palmer, K. A., Broder, E. M., Breigenzer, P., & Fishman, L. (2016). The genetics of extreme microgeographic adaptation: An integrated approach identifies a major gene underlying leaf trichome divergence in Yellowstone Mimulus guttatus. Molecular Ecology, 25(22), 5647-5662.</Citation>
</Reference>
<Reference>
<Citation>Hendry, A. P., Grant, P. R., Grant, B. R., Ford, H. A., Brewer, M. J., & Podos, J. (2006). Possible human impacts on adaptive radiation: Beak size bimodality in Darwin's finches. Proceedings of the Royal Society B: Biological Sciences, 273(1596), 1887-1894.</Citation>
</Reference>
<Reference>
<Citation>Hermisson, J., & Pennings, P. S. (2017). Soft sweeps and beyond: Understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods in Ecology and Evolution, 8(6), 700-716. https://doi.org/10.1111/2041-210x.12808</Citation>
</Reference>
<Reference>
<Citation>Johnson, E., Schröder, I., & de Vries, S. (2003). Microbial ferric iron reductases. FEMS Microbiology Reviews, 27(2-3), 427-447. https://doi.org/10.1016/S0168-6445(03)00043-3</Citation>
</Reference>
<Reference>
<Citation>Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., … Kingsley, D. M. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 484(7392), 55. https://doi.org/10.1038/nature10944</Citation>
</Reference>
<Reference>
<Citation>Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145-3175. https://doi.org/10.3390/ijms13033145</Citation>
</Reference>
<Reference>
<Citation>Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7(12), 1225-1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x</Citation>
</Reference>
<Reference>
<Citation>Kim, Y., & Nielsen, R. (2004). Linkage disequilibrium as a signature of selective sweeps. Genetics, 167(3), 1513-1524. https://doi.org/10.1534/genetics.103.025387</Citation>
</Reference>
<Reference>
<Citation>Kirilovsky, A., Mlecnik, B., Pagès, F., Bindea, G., Hackl, H., Galon, J., … Trajanoski, Z. (2009). cluego: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091-1093. https://doi.org/10.1093/bioinformatics/btp101</Citation>
</Reference>
<Reference>
<Citation>Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., … Martin, F. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47(4), 410. https://doi.org/10.1038/ng.3223</Citation>
</Reference>
<Reference>
<Citation>Krznaric, E., Verbruggen, N., Wevers, J. H., Carleer, R., Vangronsveld, J., & Colpaert, J. V. (2009). Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental Pollution, 157(5), 1581-1588. https://doi.org/10.1016/j.envpol.2008.12.030</Citation>
</Reference>
<Reference>
<Citation>Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357. https://doi.org/10.1038/nmeth.1923</Citation>
</Reference>
<Reference>
<Citation>Laporte, M., Pavey, S. A., Rougeux, C., Pierron, F., Lauzent, M., Budzinski, H., … Bernatchez, L. (2016). RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. Molecular Ecology, 25(1), 219-237. https://doi.org/10.1111/mec.13466</Citation>
</Reference>
<Reference>
<Citation>Liao, H.-L., Chen, Y., Bruns, T. D., Peay, K. G., Taylor, J. W., Branco, S., … Vilgalys, R. (2014). Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: Improved methodologies for assessing gene expression in situ. Environmental Microbiology, 16(12), 3730-3742. https://doi.org/10.1111/1462-2920.12619</Citation>
</Reference>
<Reference>
<Citation>Lin, Y.-F., & Aarts, M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular Molecular Life Sciences, 69(19), 3187-3206. https://doi.org/10.1007/s00018-012-1089-z</Citation>
</Reference>
<Reference>
<Citation>Lucas, E. R., Miles, A., Harding, N. J., Clarkson, C. S., Lawniczak, M. K. N., Kwiatkowski, D. P., … Consortium, T. A. G. G. (2019). Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Research, 29(8), 1250-1261. https://doi.org/10.1101/gr.245795.118</Citation>
</Reference>
<Reference>
<Citation>Lynd, A., Weetman, D., Barbosa, S., Egyir Yawson, A., Mitchell, S., Pinto, J., … Donnelly, M. J. (2010). Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in Anopheles gambiae s.s. Molecular Biology and Evolution, 27(5), 1117-1125. https://doi.org/10.1093/molbev/msq002</Citation>
</Reference>
<Reference>
<Citation>McDonald, M. C., Renkin, M., Spackman, M., Orchard, B., Croll, D., Solomon, P. S., & Milgate, A. (2019). Rapid parallel evolution of azole fungicide resistance in Australian populations of the wheat pathogen Zymoseptoria tritici. Applied and Environmental Microbiology, 85(4), e01908-18.</Citation>
</Reference>
<Reference>
<Citation>Miles, A., & Harding, N. (2016). scikit-allel: v0. 20.3: Zenodo.</Citation>
</Reference>
<Reference>
<Citation>Muller, L. A. H., Craciun, A. R., Ruytinx, J., Lambaerts, M., Verbruggen, N., Vangronsveld, J., & Colpaert, J. V. (2007). Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations. Mycorrhiza, 17(7), 571-580. https://doi.org/10.1007/s00572-007-0134-5</Citation>
</Reference>
<Reference>
<Citation>Muller, L. A. H., Vangronsveld, J., & Colpaert, J. V. (2007). Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats. Molecular Ecology, 16(22), 4728-4737. https://doi.org/10.1111/j.1365-294X.2007.03549.x</Citation>
</Reference>
<Reference>
<Citation>Nachman, M. W., Hoekstra, H. E., & D'Agostino, S. L. (2003). The genetic basis of adaptive melanism in pocket mice. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5268-5273. https://doi.org/10.1073/pnas.0431157100</Citation>
</Reference>
<Reference>
<Citation>Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G., & Bustamante, C. (2005). Genomic scans for selective sweeps using SNP data. Genome Research, 15(11), 1566-1575. https://doi.org/10.1101/gr.4252305</Citation>
</Reference>
<Reference>
<Citation>Op De Beeck, M., Ruytinx, J., Smits, M. M., Vangronsveld, J., Colpaert, J. V., & Rineau, F. (2015). Belowground fungal communities in pioneer Scots pine stands growing on heavy metal polluted and non-polluted soils. Soil Biology and Biochemistry, 86, 58-66. https://doi.org/10.1016/j.soilbio.2015.03.007</Citation>
</Reference>
<Reference>
<Citation>Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). plink: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795</Citation>
</Reference>
<Reference>
<Citation>Raj, A., Stephens, M., & Pritchard, J. K. (2014). faststructure: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573. https://doi.org/10.1534/genetics.114.164350</Citation>
</Reference>
<Reference>
<Citation>Rockman, M. V. (2012). The QTN program and the alleles that matter for evolution: All that’s gold does not glitter. Evolution, 66(1), 1-17. https://doi.org/10.1111/j.1558-5646.2011.01486.x</Citation>
</Reference>
<Reference>
<Citation>Rose, N. H., Bay, R. A., Morikawa, M. K., & Palumbi, S. R. (2018). Polygenic evolution drives species divergence and climate adaptation in corals. Evolution, 72(1), 82-94. https://doi.org/10.1111/evo.13385</Citation>
</Reference>
<Reference>
<Citation>Russell, J., Mascher, M., Dawson, I. K., Kyriakidis, S., Calixto, C., Freund, F., … Waugh, R. (2016). Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics, 48(9), 1024. https://doi.org/10.1038/ng.3612</Citation>
</Reference>
<Reference>
<Citation>Ruytinx, J., Coninx, L., Nguyen, H., Smisdom, N., Morin, E., Kohler, A., … Colpaert, J. V. (2017). Identification, evolution and functional characterization of two Zn CDF-family transporters of the ectomycorrhizal fungus Suillus luteus. Environmental Microbiology Reports, 9(4), 419-427. https://doi.org/10.1111/1758-2229.12551</Citation>
</Reference>
<Reference>
<Citation>Ruytinx, J., Coninx, L., Op De Beeck, M., Arnauts, N., Rineau, F., & Colpaert, J. V. (2019). Adaptive zinc tolerance is supported by extensive gene multiplication and differences in cis-regulation of a CDF transporter in an ectomycorrhizal fungus. bioRxiv. Retrieved from https://www.biorxiv.org/content/biorxiv/early/2019/10/28/817676.full.pdf</Citation>
</Reference>
<Reference>
<Citation>Ruytinx, J., Craciun, A. R., Verstraelen, K., Vangronsveld, J., Colpaert, J. V., & Verbruggen, N. (2011). Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates. Mycorrhiza, 21(3), 145-154. https://doi.org/10.1007/s00572-010-0318-2</Citation>
</Reference>
<Reference>
<Citation>Ruytinx, J., Martino, E., Rozpadek, P., Daghino, S., Turnau, K., Colpaert, J. V., & Perotto, S. (2016). Homeostasis of trace elements in mycorrhizal fungi. In F. Martin (Ed.), Molecular mycorrhizal symbiosis (1st ed., pp. 277-298). Wiley Online Books.</Citation>
</Reference>
<Reference>
<Citation>Ruytinx, J., Nguyen, H., Van Hees, M., Op De Beeck, M., Vangronsveld, J., Carleer, R., … Adriaensen, K. (2013). Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics, 5(9), 1225-1233. https://doi.org/10.1039/C3MT00061C</Citation>
</Reference>
<Reference>
<Citation>Schlenke, T. A., & Begun, D. (2004). Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences of the United States of America, 101(6), 1626-1631. https://doi.org/10.1073/pnas.0303793101</Citation>
</Reference>
<Reference>
<Citation>Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504. https://doi.org/10.1101/gr.1239303</Citation>
</Reference>
<Reference>
<Citation>Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., … Pugh, T. A. M. (2016). Global change pressures on soils from land use and management. Global Change Biology, 22(3), 1008-1028. https://doi.org/10.1111/gcb.13068</Citation>
</Reference>
<Reference>
<Citation>Sonke, J. E., Hoogewerff, J. A., van der Laan, S. R., & Vangronsveld, J. (2002). A chemical and mineralogical reconstruction of Zn-smelter emissions in the Kempen region (Belgium), based on organic pool sediment cores. Science of the Total Environment, 292(1), 101-119. https://doi.org/10.1016/S0048-9697(02)00033-5</Citation>
</Reference>
<Reference>
<Citation>Steenwyk, J. L., Soghigian, J. S., Perfect, J. R., & Gibbons, J. G. (2016). Copy number variation contributes to cryptic genetic variation in outbreak lineages of Cryptococcus gattii from the North American Pacific Northwest. BMC Genomics, 17(1), 700. https://doi.org/10.1186/s12864-016-3044-0</Citation>
</Reference>
<Reference>
<Citation>Stephan, U. W., & Scholz, G. (1993). Nicotianamine: Mediator of transport of iron and heavy metals in the phloem? Physiologia Plantarum, 88(3), 522-529.</Citation>
</Reference>
<Reference>
<Citation>Swarts, K., Gutaker, R. M., Benz, B., Blake, M., Bukowski, R., Holland, J., … Romay, M. C. (2017). Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 357(6350), 512-515.</Citation>
</Reference>
<Reference>
<Citation>Talke, I. N., Hanikenne, M., & Krämer, U. (2006). Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the Hyperaccumulator Arabidopsis halleri. Plant Physiology, 142(1), 148-167. https://doi.org/10.1104/pp.105.076232</Citation>
</Reference>
<Reference>
<Citation>Tigano, A., & Friesen, V. (2016). Genomics of local adaptation with gene flow. Molecular Ecology, 25(10), 2144-2164. https://doi.org/10.1111/mec.13606</Citation>
</Reference>
<Reference>
<Citation>van den Brink, H. M., van Gorcom, R. F. M., van den Hondel, C. A. M. J. J., & Punt, P. J. (1998). Cytochrome P450 enzyme systems in fungi. Fungal Genetics and Biology, 23(1), 1-17. https://doi.org/10.1006/fgbi.1997.1021</Citation>
</Reference>
<Reference>
<Citation>Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., … Thibault, J. (2013). From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 43(1), 11.10.11-11.10.33.</Citation>
</Reference>
<Reference>
<Citation>Weber, M., Harada, E., Vess, C., Roepenack-Lahaye, E. V., & Clemens, S. (2004). Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. The Plant Journal, 37(2), 269-281. https://doi.org/10.1046/j.1365-313X.2003.01960.x</Citation>
</Reference>
<Reference>
<Citation>Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x</Citation>
</Reference>
<Reference>
<Citation>Whitehead, A. (2014). Evolutionary genomics of environmental pollution. In C. R. Landry, & N. Aubin-Horth (Eds.), Ecological genomics: Ecology and the evolution of genes and genomes (pp. 321-337). Dordrecht, The NetherlandsSpringer.</Citation>
</Reference>
<Reference>
<Citation>Williams, C. M., Buckley, L. B., Sheldon, K. S., Vickers, M., Pörtner, H.-O., Dowd, W. W., … Stillman, J. H. (2016). Biological impacts of thermal extremes: Mechanisms and costs of functional responses matter. Integrative Comparative Biology, 56(1), 73-84. https://doi.org/10.1093/icb/icw013</Citation>
</Reference>
<Reference>
<Citation>Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., … Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565-569. https://doi.org/10.1038/ng.608</Citation>
</Reference>
<Reference>
<Citation>Yeaman, S. (2015). Local adaptation by alleles of small effect. The American Naturalist, 186(S1), S74-S89. https://doi.org/10.1086/682405</Citation>
</Reference>
<Reference>
<Citation>Yeaman, S., & Otto, S. P. (2011). Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution: International Journal of Organic Evolution, 65(7), 2123-2129. https://doi.org/10.1111/j.1558-5646.2011.01277.x</Citation>
</Reference>
<Reference>
<Citation>Zhang, H., Seabra, M. C., & Deisenhofer, J. (2000). Crystal structure of Rab geranylgeranyltransferase at 2.0 Å resolution. Structure, 8(3), 241-251. https://doi.org/10.1016/S0969-2126(00)00102-7</Citation>
</Reference>
<Reference>
<Citation>Zheng, X. J. U. o. W., Washington, USA (2013). A Tutorial for the R Package SNPRelate.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Colorado</li>
<li>Hawaï</li>
<li>Montana</li>
<li>Région de Bruxelles-Capitale</li>
</region>
<settlement>
<li>Bruxelles</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Montana">
<name sortKey="Bazzicalupo, Anna L" sort="Bazzicalupo, Anna L" uniqKey="Bazzicalupo A" first="Anna L" last="Bazzicalupo">Anna L. Bazzicalupo</name>
</region>
<name sortKey="Branco, Sara" sort="Branco, Sara" uniqKey="Branco S" first="Sara" last="Branco">Sara Branco</name>
<name sortKey="Ke, Yi Hong" sort="Ke, Yi Hong" uniqKey="Ke Y" first="Yi-Hong" last="Ke">Yi-Hong Ke</name>
<name sortKey="Nguyen, Nhu H" sort="Nguyen, Nhu H" uniqKey="Nguyen N" first="Nhu H" last="Nguyen">Nhu H. Nguyen</name>
<name sortKey="Vilgalys, Rytas" sort="Vilgalys, Rytas" uniqKey="Vilgalys R" first="Rytas" last="Vilgalys">Rytas Vilgalys</name>
</country>
<country name="Belgique">
<region name="Région de Bruxelles-Capitale">
<name sortKey="Ruytinx, Joske" sort="Ruytinx, Joske" uniqKey="Ruytinx J" first="Joske" last="Ruytinx">Joske Ruytinx</name>
</region>
<name sortKey="Colpaert, Jan V" sort="Colpaert, Jan V" uniqKey="Colpaert J" first="Jan V" last="Colpaert">Jan V. Colpaert</name>
<name sortKey="Coninx, Laura" sort="Coninx, Laura" uniqKey="Coninx L" first="Laura" last="Coninx">Laura Coninx</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000189 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000189 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32866320
   |texte=   Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32866320" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020